WCI

RI Related News

비회원이 작성한 글입니다!

글작성시 입력했던 비밀번호를 입력해주세요.

List Next Prev
게시글 내용
New Imaging Isotope Meets Promising Therapy Isotopes
2021/09/06

A multidisciplinary team, under the DoE, US, has demonstrated the production, purification, and potential application of cerium-134. This isotope decays into lanthanum-134, an isotope useful for positron emission tomography (PET) imaging. PET imaging uses radioactive substances to visualize and measure processes in the body. It is an essential tool in diagnosing disease and monitoring treatment. The team demonstrated the use of cerium-134 for PET imaging in mice. The results show that cerium-134, through its lanthanum-134 decay product, could serve as a diagnostic partner for medical treatments based on actinium-225 or thorium-227.

 

Developing targeted medical interventions that use radioactive isotopes to treat disease could transform how science treats disease. This approach involves selectively delivering an alpha-emitting radioisotope like actinium-225 and thorium-227 to diseased cells such as tumors. The radioactive decay kills the diseased cell while sparing the surrounding healthy tissue. Widespread implementation of this approach would be easier if medical practitioners had more tools to non-invasively and accurately track the radioactive medication in the body. One such tool is PET imaging with cerium-134. Unfortunately, actinium-225, thorium-227, and many other alpha-emitting radioisotopes are incompatible with PET imaging. The team demonstrated in mice that PET imaging cerium-134, through its lanthanum-134 decay product, can track actinium-225 and thorium-227. Greater availability of cerium-134 therefore opens the door to the development of additional targeted cancer therapies.

 

To read more please visit:

New Imaging Isotope Meets Promising Therapy Isotopes-Department of Energy,Office of Science

Source: Department of Energy, Office of Science